Workers
Workers run code that won't block the "main thread" controlling the user interface. If you block the main thread, your web page becomes annoyingly unresponsive. You should never block the main thread.
Happily, PyScript makes it very easy to use workers and uses a feature recently added to web standards called Atomics. You don't need to know about Atomics to use web workers, but the underlying coincident library uses it under the hood.
Info
Sometimes you only need to await
in the main thread the result of a call
to a method exposed in a worker.
In such a limited case, and on the understanding that code in the worker
will not be able to reach back into the main thread, you should
use the sync_main_only
flag in your
configuration.
While this eliminates the need for the Atomics related header configuration (see below), the only possible use case is to return a serialisable result from the method called on the worker.
HTTP headers
For Atomics to work you must ensure your web server enables the following headers (this is the default behaviour for pyscript.com):
Access-Control-Allow-Origin: *
Cross-Origin-Opener-Policy: same-origin
Cross-Origin-Embedder-Policy: require-corp
Cross-Origin-Resource-Policy: cross-origin
If you are not able to configure your server's headers, use the mini-coi project to achieve the same end.
Info
The simplest way to use mini-coi is to place the
mini-coi.js
file in the root of your website (i.e. /
), and reference it as the first
child tag in the <head>
of your HTML documents:
Start working
To start your code in a worker, simply ensure the <script>
, <py-script>
or
<mpy-script>
tag pointing to the code you want to run has a worker
attribute flag:
Alternatively, to launch a worker from within Python running on the main thread use the pyscript.PyWorker class and you must reference both the target Python script and interpreter type:
from pyscript import PyWorker
# The type MUST be given and can be either `micropython` or `pyodide`
PyWorker("my-worker-code.py", type="micropython")
Worker interactions
Code running in the worker needs to be able to interact with code running in the main thread and perhaps have access to the web page. This is achieved via some helpful builtin utilities.
Note
For ease of use, the worker related functionality in PyScript is a simpler presentation of more sophisticated and powerful behaviour available via PolyScript.
If you are a confident advanced user, please consult the XWorker related documentation from the PolyScript project for how to make use of these features.
To synchronise serializable data between the worker and the main thread use
the sync
function in the worker to reference a
function registered on the main thread:
from pyscript import PyWorker
def hello(name="world"):
return(f"Hello, {name}")
# Create the worker.
worker = PyWorker("./worker.py", type="micropython")
# Register the hello function as callable from the worker.
worker.sync.hello = hello
from pyscript import sync, window
greeting = sync.hello("PyScript")
window.console.log(greeting)
The values passed between the main thread and the worker must be serializable. Try the example given above via this project on PyScript.com.
No matter if your code is running on the main thread or in a web worker,
both the pyscript.window
(representing the main
thread's global window context) and
pyscript.document
(representing the web
page's
document object)
will be available and work in the same way. As a result, a worker can reach
into the DOM and access some window
based APIs.
Warning
Access to the window
and document
objects is a powerful feature. Please
remember that:
- Arguments to and the results from such calls, when used in a worker, must be serializable, otherwise they won't work.
- If you manipulate the DOM via the
document
object, and other workers or code on the main thread does so too, they may interfere with each other and produce unforeseen problematic results. Remember, with great power comes great responsibility... and we've given you a bazooka (so please remember not to shoot yourself in the foot with it).
Common Use Case
While it is possible to start a MicroPython or Pyodide worker from either MicroPython or Pyodide running on the main thread, the most common use case we have encountered is MicroPython on the main thread starting a Pyodide worker.
Here's how:
index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<!-- PyScript CSS -->
<link rel="stylesheet" href="https://pyscript.net/releases/2024.6.1/core.css">
<!-- This script tag bootstraps PyScript -->
<script type="module" src="https://pyscript.net/releases/2024.6.1/core.js"></script>
<title>PyWorker - mpy bootstrapping pyodide example</title>
<!-- the async attribute is useful but not mandatory -->
<script type="mpy" src="main.py" async></script>
</head>
</html>
main.py
from pyscript import PyWorker, document
# Bootstrap the Pyodide worker, with optional config too.
# The worker is:
# * Owned by this script, no JS or Pyodide code in the same page can access
# it.
# * It allows pre-sync methods to be exposed.
# * It has a ready Promise to await for when Pyodide is ready in the worker.
# * It allows the use of post-sync (methods exposed by Pyodide in the
# worker).
worker = PyWorker("worker.py", type="pyodide")
# Expose a utility that can be immediately invoked in the worker.
worker.sync.greetings = lambda: print("Pyodide bootstrapped")
print("before ready")
# Await until Pyodide has completed its bootstrap, and is ready.
await worker.ready
print("after ready")
# Await any exposed methods exposed via Pyodide in the worker.
result = await worker.sync.heavy_computation()
print(result)
# Show the result at the end of the body.
document.body.append(result)
# Free memory and get rid of everything in the worker.
worker.terminate()
worker.py
from pyscript import sync
# Use any methods from main.py on the main thread.
sync.greetings()
# Expose any methods meant to be used from main.
sync.heavy_computation = lambda: 6 * 7
Save these files in a tmp
folder, ensure your headers (just
use npx mini-coi ./tmp
to serve via localhost) then see the following
outcome in the browser's devtools.